skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Fernández, Yohami"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT Tiger moth species vary greatly in the number of clicks they produce and the resultant duty cycle. Signals with higher duty cycles are expected to more effectively interfere with bat sonar. However, little is known about the minimum duty cycle of tiger moth signals for sonar jamming. Is there a threshold that allows us to classify moths as acoustically aposematic versus sonar jammers based on their duty cycles? We performed playback experiments with three wild-caught adult male bats, Eptesicus fuscus. Bat attacks on tethered moths were challenged using acoustic signals of Bertholdia trigona with modified duty cycles ranging from 0 to 46%. We did not find evidence for a duty cycle threshold; rather, the ability to jam the bat's sonar was a continuous function of duty cycle consistent with a steady increase in the number of clicks arriving during a critical signal processing time window just prior to the arrival of an echo. The proportion of successful captures significantly decreased as the moth duty cycle increased. Our findings suggest that moths cannot be unambiguously classified as acoustically aposematic or sonar jammers based solely on duty cycle. Bats appear to compensate for sonar jamming by lengthening the duration of their terminal buzz and they are more successful in capturing moths when they do so. In contrast to previous findings for bats performing difficult spatial tasks, the number of sonar sound groups decreased in response to high duty cycles and did not affect capture success. 
    more » « less